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1 Annotation

Algorithm which has taken the first place in competition “On Greek Media Mon-
itoring Multilabel Classification (WISE 2014)” [4] is described. The competition
was related to the problem of multi-label classification for articles coming from
Greek printed media. We proposed a simple and effective algorithm.

2 The problem

Raw data comes from the scanning of print media, article segmentation, and
optical character segmentation. The articles (texts) have been labeled by ex-
perts by using labels from the set {1, 2, . . . , l}, l = 203. A label can be viewed
as a topic discussed in the text. One article may have several labels. Articles
are described by n = 301561 numerical attributes corresponded to the tokens
encountered inside the texts. However organizers have computed tf-idf statis-
tic and made unit normalization. So the article description is a real vector
(x1, . . . , xn) ∈ Rn of unit L2-norm. The problem is to build multi-label classi-
fiers for the automated annotation of articles into topics. Participants of WISE
2014 competition has a training set – it is m = 64857 labeled descriptions of
articles from May 2013 to September 2013, and a test set contained 34923 unla-
beled descriptions. Test set labels are known only to organizers. The evaluation
metric for this competition is Mean F1-Score [3].

Let (xt1, . . . , xtn) be a description of the t-th article and (yt1, . . . , ytl) be its
label vector: ytj = 1 if and only if the t-th article has the j-th label. Many
results in Russian scientific school of recognition and data mining are based on
the fact that algorithm should be presented as a superposition of two algorithms:
the first one obtains vector (gt1, . . . , gtl) of estimations, gtj is an “estimation of
belonging” of the t-th article to the j-th class [6], [1]. The second algorithm
transforms the estimation vector to a binary label vector (at1, . . . , atl) ∈ {0, 1}l.
Nonzero elements of the vector are labels, which we assign to the t-th article.

As the first algorithm we use regressor (or linear combination of regressors)
we’ll call it regressor operator, the second algorithm should be simple enough,
we’ll call it decision rule. Thus we construct solution by superposition of a
regressor operator and a decision rule. The main idea of our approach is that
the algorithm should be simple, interpretable and efficient (have high perfor-
mance). Simple algorithms are more reliable and easy to tune. Interpretability
can be very useful in practice for experts on print media. Efficiency can be
reached by blending of several simple algorithms, so the regressor operator will
be constructed as a combinations of simple interpretable regressors.
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Table 1: The best performances in local tests

decision rule: (1) (2) (3) (4)
50NN 0.6204 0.6760 0.6549 0.6759

logistic regression 0.7734 0.7829 0.7738 0.7828
ridge regression 0.7634 0.7641 0.7418 0.7642

3 Decision rule

We have investigated a variety of different decision rules:

C(g1, . . . , gl) = (a1, . . . , al),

aj = 1 ⇔ gj ≥ min(p,max(g1, . . . , gl)), (1)

aj = 1 ⇔ gj ≥ p ·max(g1, . . . , gl), (2)

aj = 1 ⇔ gj ≥ min (p · (g1 + · · ·+ gl), max(g1, . . . , gl)) , (3)

aj = 1 ⇔ gj −
g1 + · · ·+ gl

l
≥ p ·max

i

(
gi −

g1 + · · ·+ gl
l

)
. (4)
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Figure 1: Performance of decision rules

Fig.1 shows their performance when we use logistic regression as a regressor
operator. The second and forth decision rules seem to be more effective, see
Tab.1. In our final solution we use second rule and p = 0.55.

4 Regressor operator

One of the most popular algorithms for text classification is kNN (k-nearest
neighbors). For this problem kNN is not very effective as a regressor operator
(0.6760 mean F1-score when k = 50), but it is useful in linear combination for
the final solution. Our version of kNN uses a weighted average of the k nearest
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neighbors, weighted by their cosine similarity. In estimation vector (g1, . . . , gl)
obtained by kNN gj equals to a sum of weights of the nearest k neighbors with
the j-th label.

Nearest centroid classifier is a little worse (0.6314 mean F1-score in local
tests and 0.624 in leaderboard).

Logistic regression reveals to be the most efficient regressor. We use
scikit-learn [5] realization of this popular algorithm and the model

linear_model.LogisticRegression(penalty=’l1’, C=6.0, tol=0.001)

gives 0.7829 mean F1-score in local tests, 0.7734 – in leaderbord. Parameter
C = 6.0 (inverse of regularization strength) is optimal when we use constant
value for every label. We do not tune model parameters for each label separately,
the reason is that some labels are very rare, so it can result in overfitting.

Ridge regression is also much better than kNN. Scikit-learn model

linear_model.Ridge(0.8)

gives 0.7641 mean F1-score in local tests.
We can reduce number of features by performing singular value decompo-

sition (SVD) of matrix ||xti||. This approach was a quite effective in a similar
problem [2]. However our experiments show that the more number of the largest
singular values and associated singular vectors we use the better performance.
And SVD calculation takes a lot of time: for acceptable time only 300 singular
vectors were calculated and the performance of ridge regression was still less
than on initial data.

5 Another features

We can use other features and feature transforms, for example features (xd
t1, . . . , x

d
tn)

(values to the d-th power). Value d = 0.8 slightly increases performance (+0.005).
Another way is a features adding, for example we can sort vector x = (xd

t1, . . . , x
d
tn)

and concatenate the initial vector x and a sorted vector xsort. It also slightly
improves performance, but we have not used feature generations in our final
solution in the competition.

6 Parameter tuning

We perform a parameter tuning on the last 14857 articles in the training set,
so we do not use cross validation. Fig.2 shows that the training set is rather
diverse. However results on the last articles correlates with a public leaderboard.

7 Blending

One of the most popular strategies in data mining is a blending, when we use
several algorithms. The simplest way of blending in our problem is a linear
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Figure 2: Performance of logistic regression on different folds

combination. Fig.3 shows performance of the operator

αA1 + (1− α)A2, α ∈ [0, 1],

for different pairs of regressor operators A1, A2 and decision rule (2). When
A1 means logistic regression, A2 means ridge regression and α = 0.68, the
performance increases to 0.7815 mean F1-score.

As a regressor operator we use a linear combinations of regressors. According
to our investigations, we choose the next basic models:

linear_model.LogisticRegression(penalty=’l1’, C=2.0, tol=0.001),

linear_model.LogisticRegression(penalty=’l1’, C=6.0, tol=0.001),

linear_model.LogisticRegression(penalty=’l1’, C=10.0, tol=0.001,

linear_model.Ridge(alpha=0.4),

linear_model.Ridge(alpha=0.8),

linear_model.Ridge(alpha=1.2),

1NN, 2NN, 3NN, 50NN.

For each label we train these models on the first 50000 texts from the training
set and find their optimal combination by ridge regression on the other texts.
To build final solution we should retrain these models on the whole training set,
construct the linear combination for every label (coefficients are already known)
and then apply a decision rule (2) with p = 0.55. This simple approach shows
performance of 0.7945 mean F1-score in local tests, 0.794 in public leaderboard,
0.7969 in private leaderboard.
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Figure 3: Performance of linear combinations
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